Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.

Identifieur interne : 000708 ( Main/Exploration ); précédent : 000707; suivant : 000709

Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.

Auteurs : Xi Liu [République populaire de Chine] ; Shian Liu ; Yingang Feng ; Jian-Zhong Liu ; Yuling Chen ; Khanh Pham ; Haiteng Deng ; Kendal D. Hirschi ; Xinquan Wang ; Ninghui Cheng

Source :

RBID : pubmed:23690600

Descripteurs français

English descriptors

Abstract

Glutaredoxins (Grxs) have been identified across taxa as important mediators in various physiological functions. A chloroplastic monothiol glutaredoxin, AtGRXS16 from Arabidopsis thaliana, comprises two distinct functional domains, an N-terminal domain (NTD) with GlyIleTyr-TyrIleGly (GIY-YIG) endonuclease motif and a C-terminal Grx module, to coordinate redox regulation and DNA cleavage in chloroplasts. Structural determination of AtGRXS16-NTD showed that it possesses a GIY-YIG endonuclease fold, but the critical residues for the nuclease activity are different from typical GIY-YIG endonucleases. AtGRXS16-NTD was able to cleave λDNA and chloroplast genomic DNA, and the nuclease activity was significantly reduced in AtGRXS16. Functional analysis indicated that AtGRXS16-NTD could inhibit the ability of AtGRXS16 to suppress the sensitivity of yeast grx5 cells to oxidative stress; however, the C-terminal Grx domain itself and AtGRXS16 with a Cys123Ser mutation were active in these cells and able to functionally complement a Grx5 deficiency in yeast. Furthermore, the two functional domains were shown to be negatively regulated through the formation of an intramolecular disulfide bond. These findings unravel a manner of regulation for Grxs and provide insights into the mechanistic link between redox regulation and DNA metabolism in chloroplasts.

DOI: 10.1073/pnas.1306899110
PubMed: 23690600
PubMed Central: PMC3677505


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.</title>
<author>
<name sortKey="Liu, Xi" sort="Liu, Xi" uniqKey="Liu X" first="Xi" last="Liu">Xi Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shian" sort="Liu, Shian" uniqKey="Liu S" first="Shian" last="Liu">Shian Liu</name>
</author>
<author>
<name sortKey="Feng, Yingang" sort="Feng, Yingang" uniqKey="Feng Y" first="Yingang" last="Feng">Yingang Feng</name>
</author>
<author>
<name sortKey="Liu, Jian Zhong" sort="Liu, Jian Zhong" uniqKey="Liu J" first="Jian-Zhong" last="Liu">Jian-Zhong Liu</name>
</author>
<author>
<name sortKey="Chen, Yuling" sort="Chen, Yuling" uniqKey="Chen Y" first="Yuling" last="Chen">Yuling Chen</name>
</author>
<author>
<name sortKey="Pham, Khanh" sort="Pham, Khanh" uniqKey="Pham K" first="Khanh" last="Pham">Khanh Pham</name>
</author>
<author>
<name sortKey="Deng, Haiteng" sort="Deng, Haiteng" uniqKey="Deng H" first="Haiteng" last="Deng">Haiteng Deng</name>
</author>
<author>
<name sortKey="Hirschi, Kendal D" sort="Hirschi, Kendal D" uniqKey="Hirschi K" first="Kendal D" last="Hirschi">Kendal D. Hirschi</name>
</author>
<author>
<name sortKey="Wang, Xinquan" sort="Wang, Xinquan" uniqKey="Wang X" first="Xinquan" last="Wang">Xinquan Wang</name>
</author>
<author>
<name sortKey="Cheng, Ninghui" sort="Cheng, Ninghui" uniqKey="Cheng N" first="Ninghui" last="Cheng">Ninghui Cheng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23690600</idno>
<idno type="pmid">23690600</idno>
<idno type="doi">10.1073/pnas.1306899110</idno>
<idno type="pmc">PMC3677505</idno>
<idno type="wicri:Area/Main/Corpus">000736</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000736</idno>
<idno type="wicri:Area/Main/Curation">000736</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000736</idno>
<idno type="wicri:Area/Main/Exploration">000736</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.</title>
<author>
<name sortKey="Liu, Xi" sort="Liu, Xi" uniqKey="Liu X" first="Xi" last="Liu">Xi Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shian" sort="Liu, Shian" uniqKey="Liu S" first="Shian" last="Liu">Shian Liu</name>
</author>
<author>
<name sortKey="Feng, Yingang" sort="Feng, Yingang" uniqKey="Feng Y" first="Yingang" last="Feng">Yingang Feng</name>
</author>
<author>
<name sortKey="Liu, Jian Zhong" sort="Liu, Jian Zhong" uniqKey="Liu J" first="Jian-Zhong" last="Liu">Jian-Zhong Liu</name>
</author>
<author>
<name sortKey="Chen, Yuling" sort="Chen, Yuling" uniqKey="Chen Y" first="Yuling" last="Chen">Yuling Chen</name>
</author>
<author>
<name sortKey="Pham, Khanh" sort="Pham, Khanh" uniqKey="Pham K" first="Khanh" last="Pham">Khanh Pham</name>
</author>
<author>
<name sortKey="Deng, Haiteng" sort="Deng, Haiteng" uniqKey="Deng H" first="Haiteng" last="Deng">Haiteng Deng</name>
</author>
<author>
<name sortKey="Hirschi, Kendal D" sort="Hirschi, Kendal D" uniqKey="Hirschi K" first="Kendal D" last="Hirschi">Kendal D. Hirschi</name>
</author>
<author>
<name sortKey="Wang, Xinquan" sort="Wang, Xinquan" uniqKey="Wang X" first="Xinquan" last="Wang">Xinquan Wang</name>
</author>
<author>
<name sortKey="Cheng, Ninghui" sort="Cheng, Ninghui" uniqKey="Cheng N" first="Ninghui" last="Cheng">Ninghui Cheng</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (genetics)</term>
<term>Antiporters (MeSH)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Chloroplasts (enzymology)</term>
<term>Chromatography, Gel (MeSH)</term>
<term>DNA (metabolism)</term>
<term>Endonucleases (genetics)</term>
<term>Endonucleases (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Mutation, Missense (genetics)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Spectrophotometry, Ultraviolet (MeSH)</term>
<term>Yeasts (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (métabolisme)</term>
<term>Antiports (MeSH)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Chloroplastes (enzymologie)</term>
<term>Chromatographie sur gel (MeSH)</term>
<term>Endonucleases (génétique)</term>
<term>Endonucleases (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Levures (MeSH)</term>
<term>Motifs d'acides aminés (génétique)</term>
<term>Mutation faux-sens (génétique)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Spectrophotométrie UV (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Endonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Carrier Proteins</term>
<term>DNA</term>
<term>Endonucleases</term>
<term>Glutaredoxins</term>
<term>Reactive Oxygen Species</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Antiporters</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chloroplastes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Mutation, Missense</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Endonucleases</term>
<term>Motifs d'acides aminés</term>
<term>Mutation faux-sens</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN</term>
<term>Endonucleases</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Gel</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Mass Spectrometry</term>
<term>Oxidation-Reduction</term>
<term>Protein Folding</term>
<term>Protein Structure, Tertiary</term>
<term>Spectrophotometry, Ultraviolet</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Antiports</term>
<term>Chromatographie sur gel</term>
<term>Levures</term>
<term>Oxydoréduction</term>
<term>Pliage des protéines</term>
<term>Spectrométrie de masse</term>
<term>Spectrophotométrie UV</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins (Grxs) have been identified across taxa as important mediators in various physiological functions. A chloroplastic monothiol glutaredoxin, AtGRXS16 from Arabidopsis thaliana, comprises two distinct functional domains, an N-terminal domain (NTD) with GlyIleTyr-TyrIleGly (GIY-YIG) endonuclease motif and a C-terminal Grx module, to coordinate redox regulation and DNA cleavage in chloroplasts. Structural determination of AtGRXS16-NTD showed that it possesses a GIY-YIG endonuclease fold, but the critical residues for the nuclease activity are different from typical GIY-YIG endonucleases. AtGRXS16-NTD was able to cleave λDNA and chloroplast genomic DNA, and the nuclease activity was significantly reduced in AtGRXS16. Functional analysis indicated that AtGRXS16-NTD could inhibit the ability of AtGRXS16 to suppress the sensitivity of yeast grx5 cells to oxidative stress; however, the C-terminal Grx domain itself and AtGRXS16 with a Cys123Ser mutation were active in these cells and able to functionally complement a Grx5 deficiency in yeast. Furthermore, the two functional domains were shown to be negatively regulated through the formation of an intramolecular disulfide bond. These findings unravel a manner of regulation for Grxs and provide insights into the mechanistic link between redox regulation and DNA metabolism in chloroplasts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23690600</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.</ArticleTitle>
<Pagination>
<MedlinePgn>9565-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1306899110</ELocationID>
<Abstract>
<AbstractText>Glutaredoxins (Grxs) have been identified across taxa as important mediators in various physiological functions. A chloroplastic monothiol glutaredoxin, AtGRXS16 from Arabidopsis thaliana, comprises two distinct functional domains, an N-terminal domain (NTD) with GlyIleTyr-TyrIleGly (GIY-YIG) endonuclease motif and a C-terminal Grx module, to coordinate redox regulation and DNA cleavage in chloroplasts. Structural determination of AtGRXS16-NTD showed that it possesses a GIY-YIG endonuclease fold, but the critical residues for the nuclease activity are different from typical GIY-YIG endonucleases. AtGRXS16-NTD was able to cleave λDNA and chloroplast genomic DNA, and the nuclease activity was significantly reduced in AtGRXS16. Functional analysis indicated that AtGRXS16-NTD could inhibit the ability of AtGRXS16 to suppress the sensitivity of yeast grx5 cells to oxidative stress; however, the C-terminal Grx domain itself and AtGRXS16 with a Cys123Ser mutation were active in these cells and able to functionally complement a Grx5 deficiency in yeast. Furthermore, the two functional domains were shown to be negatively regulated through the formation of an intramolecular disulfide bond. These findings unravel a manner of regulation for Grxs and provide insights into the mechanistic link between redox regulation and DNA metabolism in chloroplasts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Shian</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Yingang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jian-Zhong</ForeName>
<Initials>JZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yuling</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pham</LastName>
<ForeName>Khanh</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Haiteng</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hirschi</LastName>
<ForeName>Kendal D</ForeName>
<Initials>KD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xinquan</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Ninghui</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2LWF</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017920">Antiporters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C473126">CXIP1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C528773">Grx5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004720">Endonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="C582684">GRXS16 protein, Arabidopsis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017920" MajorTopicYN="N">Antiporters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002850" MajorTopicYN="N">Chromatography, Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004720" MajorTopicYN="N">Endonucleases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="N">Mutation, Missense</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">nuclear magnetic resonance</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23690600</ArticleId>
<ArticleId IdType="pii">1306899110</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1306899110</ArticleId>
<ArticleId IdType="pmc">PMC3677505</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006;7:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2012 Feb;22(1):94-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22169085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 21;278(8):6503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12480930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 May;40(10):4247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22287629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Feb 8;21(3):243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21256016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2002 Nov;9(11):806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2012 Feb;22(1):88-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22257761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 9;408(6809):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jun;66(Pt 6):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Mar 19;582(6):848-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Oct;12(10):4040-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8404870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3379-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:187-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2006 Feb;106(2):233-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16464004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1989 Jan;15(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Jun;1784(6):946-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 8;281(36):26280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2010 Oct 13;18(10):1321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20800503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Mar 24;247(2):197-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7707369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7719-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1881913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 7;283(10):6095-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643920</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Yuling" sort="Chen, Yuling" uniqKey="Chen Y" first="Yuling" last="Chen">Yuling Chen</name>
<name sortKey="Cheng, Ninghui" sort="Cheng, Ninghui" uniqKey="Cheng N" first="Ninghui" last="Cheng">Ninghui Cheng</name>
<name sortKey="Deng, Haiteng" sort="Deng, Haiteng" uniqKey="Deng H" first="Haiteng" last="Deng">Haiteng Deng</name>
<name sortKey="Feng, Yingang" sort="Feng, Yingang" uniqKey="Feng Y" first="Yingang" last="Feng">Yingang Feng</name>
<name sortKey="Hirschi, Kendal D" sort="Hirschi, Kendal D" uniqKey="Hirschi K" first="Kendal D" last="Hirschi">Kendal D. Hirschi</name>
<name sortKey="Liu, Jian Zhong" sort="Liu, Jian Zhong" uniqKey="Liu J" first="Jian-Zhong" last="Liu">Jian-Zhong Liu</name>
<name sortKey="Liu, Shian" sort="Liu, Shian" uniqKey="Liu S" first="Shian" last="Liu">Shian Liu</name>
<name sortKey="Pham, Khanh" sort="Pham, Khanh" uniqKey="Pham K" first="Khanh" last="Pham">Khanh Pham</name>
<name sortKey="Wang, Xinquan" sort="Wang, Xinquan" uniqKey="Wang X" first="Xinquan" last="Wang">Xinquan Wang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Xi" sort="Liu, Xi" uniqKey="Liu X" first="Xi" last="Liu">Xi Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000708 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000708 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23690600
   |texte=   Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23690600" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020